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Abstract

The dynamic response of a layered medium subjected to anti-plane loadings is investigated in this study. An effective
analytical method is used to present transient full field solutions in the layered medium. The boundary value problem is
solved using Laplace transform with respect to time and Fourier transform with respect to space. The transient response
is then implemented analytically by Cagniard’s method that obviates the contour integration difficulties and whose
terms represent successively reflected and transmitted waves. The static solution is obtained by the extreme case of
transient response while the time is sufficiently long. The objective in this study is to investigate the transition phe-
nomena from transient response to static value. The numerical examples of a layered half-space are illustrated and
discussed in detail. It is found that the characteristic time of the transition not only depends on the distance between
source and receiver but also is strongly related to the wave velocities of layer and half-space. Furthermore, very in-
teresting transition behavior is observed when the layer has faster wave velocity than the half-space. © 2001 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The study of wave propagation in multilayered solid materials is of considerable interest in various
technological applications. In aerospace and mechanical engineering applications, the analysis of the re-
sponse of certain structural elements composed of laminated composites subjected to dynamic loads is often
carried out on layered plate models. In earth geophysics and earthquake engineering, the analysis and
synthesis of the ground motion generated by explosions and earthquakes are usually based on earth models
composed of a stack of homogeneous layers overlying on a uniform half-space. The coated layer materials
are also of considerable importance in electronic engineering applications. In some practical problems, the
static field is obtained after transient effects die away. How long it takes and what the transition behavior is
from transient response to static value are significant from the practical point of view.
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A variety of mathematical tools have been developed to analyze the wave propagation in layered media
and to understand the mechanical processes associated with the generation of the elastic waves at the source
and their subsequent transformations as they propagate through the layers. The classical analysis in this
area was first reported by Lamb (1904), in which the response produced by a transient load on the surface
of a uniform half-space was studied by means of an integral transform technique followed by the analytical
evaluation of the inversion integrals. Since then, analytical treatments of more complex problems involving
one or more layers continued throughout the first half of the 20th century. An excellent description of these
early studies can be found in Ewing et al. (1957) and Brekhovskikh (1980).

A matrix method for investigating elastic wave propagation in multilayered media was introduced by
Thomson (1950) and subsequently corrected and improved by Haskell (1953). This matrix method was
widely used by seismologists to determine the dispersive characteristics of surface waves in layered half-
space models of the earth. Later Gilbert and Backus (1966) introduced the propagator matrix and provided
a more formal mathematical background to the technique. Based on the propagator matrix method, a re-
flection matrix method is proposed by Kennett and Kerry (1979) to construct the entire response in terms of
reflection and transmission matrices. This method was then used to analyze the excitation due to general
sources in stratified medium. Ma and Huang (1995) derived the transfer relation expressed for the general
representations of the response between each layer, instead of displacement—traction vector, to determine
the transient response of a layered medium.

The generalized ray theory was developed since 1939 when Cagniard (1939) studied the transient waves
in two homogeneous half-spaces in contact. In his monumental work, he had shown that by going through
a sequence of contour deformations and changes of integration variables, one is able to find the inverse
Laplace transforms of the expressions for each ray. A review of this theory was given by Pao and Gajewski
(1977).

Spencer (1960) used the generalized ray method to investigate the surface response of a stratified half-
space to the radiation from a localized source. The method leads to an infinite series of the generalized ray
integral constructed in the Laplace transform domain by assembling the source function, reflection and
transmission coefficient, the receiver function, and the phase function. The method therefore obviates the
necessity for solving a tedious boundary value problem. The time function associated with each ray integral
is obtained by using the Cagniard method (Cagniard, 1939). The transient surface response of a layered
half-space due to an SH torque pulse from a point source situated inside the layer was obtained by Pekeris
et al. (1963). A comprehensive study of transient waves in a multilayered medium based on the generalized
ray theory was made by Miiller (1968a.,b, 1969) for various loading conditions. Recently, the transient
responses of a layered medium subjected to in-plane loadings were investigated analytically by Lee and Ma
(2000) using a matrix method. The connection between the matrix method and the generalized ray method
was established for the layered medium in the transform domain. Then, the numerical and experimental
results for a layered half-space were presented by Ma and Lee (2000).

In this study, the transient responses of a multilayered medium subjected to arbitrarily distributed anti-
plane loadings are investigated by an effective matrix method developed by Lee and Ma (1998). The sol-
ution in transform domain is constructed in a form of power series of the phase-related reflection and
transmission matrix. These terms represent successively reflected and transmitted waves. The transient
response is thus obtained by the application of Cagniard’s method. Although the number of waves in the
layered medium is infinite, the solution is exact up to the arrival time of the next ray. The static solution
is obtained by applying the final value theorem to the transient solution with Heaviside loading in the
transform domain. For quantitative analysis, the responses of a layered half-space subjected to an anti-
plane loading are investigated in detail. Both transient and static responses are presented in closed form
solutions. The layered half-space with two different wave velocity ratios between layer and half-space is
considered to show the very distinct transition phenomena from transient responses to static values. The
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numerical results are also used to investigate the characteristic time during which the transient effect is
important.

2. Formulation of a layered medium

Consider an n-layered medium as shown in Fig. 1. We assume that the layers are elastic, homogeneous,
and isotropic and the interfaces of the layers are perfectly welded. The undisturbed medium is subjected to
anti-plane loadings at time ¢ = 0. The quantities related to ith layer are suffixed by a superscript or subscript
(7)) while those related to ith interface are attached by a superscript [i]. Since responses for the medium
subjected to dynamic loadings located within layers can be obtained by introducing artificial interfaces at
the applied-loading locations, we consider first that all applied loadings are located at interfacial or lateral
surfaces of the layered medium.

2.1. Governing equation
For the anti-plane problem, the governing equation in any layer under no body forces can be expressed
as follows:
Pw Fw L, w
el Bl i 1
@ T T (M)

where w is the out-of-plane displacement and s7 is the slowness of the shear wave given by

st =1/cr =/p/p,

in which ¢z, p, and u are the shear wave velocity, mass density, and shear modulus, respectively. The
relevant stress components follow the Hooke’s law

Y
boundary [0 ?
ry [0] > X
interface [1] h®
(2)
[2] h
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interface [n|-1]
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boundary [n] h

Fig. 1. Configuration and coordinate system of an n-layered medium.
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2.2. Boundary conditions

The boundary conditions on the surfaces of top and bottom layers of the multilayered medium are given
by

aﬁi)(x707t) = 0')[2] (x,2), for —oo < x < o0, (3a)

a}(;’)(x7 —hy,t) = aJ[,”Z](x, t), for —oo <x< o0, (3b)
where

h, = h(i),

i=1

in which 4 is the thickness of the ith layer. Loadings applied at the interface y = —h; between two adjacent
layers yield the traction and displacement discontinuity conditions,

wi (e, =k, t) — WD (0, —hy 6) = whl(x,0), i=1,2,3,...,n—1, (4a)
a'f,’;,)(x, —h; 1) — )(,’;fl)(x, —h;,t) = aﬂ(x, 1), i=1,23...,n—1 (4b)
The applied displacement—traction vector t? (i = 0,1,...,n) at the n +1 planes are introduced to simplify
our expression,
0] _ 5[0 L Q——
= gy = 0,
and
th =l ol)', fori=12,....n-1 (5)

When a dynamic concentrated anti-plane force is applied at the ith interface, the discontinuity is given by

t = (0— f()o(x))". (6)
2.3. Formulations

The boundary value problem described above is solved by applying the Laplace transform over time ¢
with transform parameter p and the Fourier transform over spatial coordinate x with . The double
transform of an arbitrarily function f(x,y,¢) is defined by

f(y;é,p)=1 ei‘fx/o‘ f(x,p,1)e " dedx, (7)

where p is a positive real number, large enough to ensure the convergence of the integral, and & is a complex
variable. By applying the double transform, the governing equation (1) becomes an ordinary differential
equation with the following general solution

Ww(y; &, p) =w_(&p) e +w, (& p) e, (8)

where 7, = ((ps7)” + ¢%)"/* and the radical is chosen so that Rey, > 0. w_ and w, are two field coefficients
determined by boundary and interface conditions.
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From Eqgs. (2) and (8), we obtain the relations between response functions (such as displacement and
stress components) and field coefficients in the transform domain as follows (Lee and Ma, 1998):

6y2(») My ()M (y)) \wy )’
where
My (y; &, p) =77, (10a)
My (y; &, p) =e 77, (10b)
My (v; &, p) = pyre™", (10¢)
My (v; &, p) = —upre 7, (10d)

are phase-related receiver elements.

From boundary and interface conditions in Egs. (3a), (3b), (4a) and (4b) and applying the double in-
tegral transform, a system of equations are developed to determine the field coefficients w”) and wﬁ) for each
layer as follows:

(1)
(Mz(i)(o) Mz(é)(O)) <W<_1)> = 7% at top surface y = 0,
Wi

M (= m) M2~ m)) (V) = atb face y =
o L — My 2 (= My w | = at bottom surface y = —#,,

=

M(i) —h; M(i) —h; _M(i+‘) —h _M(Hl) —h; (4) .
5 I T S VG | B BT e
le(_hi) Mzz(_hi) _le (_hi) _Mzz (_hi) wo
(i+1)
wy
i=1,2,....n—1, (11)

where t indicates the transformed field for applied displacement—traction vector t as defined in Eq. (5).
Introducing a global field vector ¢ (2n elements) for the multilayered medium,

ME M\ (& p)\ " !
(p) = <<Wm< D) () ) 7 12
Wy (évp) Wy (évp)
and the global boundary displacement—traction vector t,
(&, p) = (70" . g )T, (13)

then Eq. (11) can be rewritten in a more compact form
Mec = t, (14)

where the coefficient matrix M is a 2n x 2n matrix given by (Lee and Ma, 1998)



9300 C.-C. Ma et al. | International Journal of Solids and Structures 38 (2001) 9295-9312

_DO Uo -
Ly D U
L, D,
M=D+L+U-= :
Dn72 Un72
Lnfl Dn—l Un—l
L Ln Dn .

DO*MZ(P(O)v
M(i) —hi M(i+1) _hz

D= | | =12
M,y (—h;) My, (—hi)

Up = MY (0) 0],

_M(i+1) —h 0
Ui:[ 1(?+])( ) (i=12...,n=-2),
_MZZ (_hl) 0
U . — [Mf;)(hlll)l
n—1 — (n) )
—My (—hu-1)

and the nonzero blocks for lower triangular matrix L are defined as

L — Mfi)(hl)],

| My} (—hy)
[0 M) (~h)

L, = 0 (122»3» ,I’l—l),
_0 M21 (_ l)

Lo=[0 My (=h,)]-

(15)

(17)

(18)

Note that the diagonal block matrix D is a nonsingular matrix. The stacked matrix equation as indicated in

Eq. (14) can be solved directly by.
c=M"'t

(19)

Once the global field vector ¢ is obtained, the response functions in each layer can be determined imme-

diately.

The coefficient matrix M can be written in an alternative form by extracting the diagonal block matrix D

out of the expression as (Lee and Ma, 1998)
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M =D -R), (20)
where the matrix R is given by,

R=-D'(L+U), (21)

or alternatively,

0 -D,'U,
-D;{'L,  0,, -D;'U,
-D;'L, 05,5
R = : (22)
05,5 —D;_lewz
D'\ L, 05, D,'\U,,
L -D, /'L, 0 |
The global field vector ¢ is then expressed by
c=(I—-R)s, (23)
where the source vector s is given by
s=D't, (24)
or, in a component form,
D, 't
D, 't
s(&p) = : : (25)
D, !t
D, 'tV

By the expansion of the inversion matrix of (I — R) in Eq. (23) into power matrix series of R, we obtain (Lee
and Ma, 1998)

c= ZOO: R's. (26)
i=0

It can be shown that the elements of R shown in Eq. (22) are related to the phase-related reflection and
transmission coefficients. First, the general waves propagating toward the interface [i] from the upper
medium (i) are considered. By the application of the continuity conditions at the interface, the phase-related
reflection coefficient R;/;y; at the interface [7] is expressed as follows:

RaiyVra) — Ra+n)V1i+1)

R; i+1 (5710) = ti/it+1 e—z}'r(,-)hi, Vijiv1 = ) (27)
v / v HaiyY i) T KD Y (1)
the phase-related transmission coefficient Tj/;, is
2 V(i
Ti/i+l(£ap) = lijit1 ei(yr(")ﬂr('*”)h', lLijivl = Ho¥ro (28)

My Vst + Bo V1) .

Note that 7,4, and ¢, are the reflection and transmission coefficients for plane waves, respectively.
Secondly, consider the incident waves traveling upward to the interface [i] from the lower medium (i +1).
Similarly, the phase-related reflected coefficient R/, is
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HirnVra+1) — Ko Vra)

Rii(&,p) = ri+1/f62~"”’*”h’} Fipl/i = ; (29)
7 M)Vt + RV
the phase-related transmission coefficient 7}, is
NI , 200V i
Ti1i(é,p) = i+1/ie(/m) i)k tivyi = GSMENGSY (30)

V) + By Vi

The global phase-related reflection and transmission matrix R given in Eq. (22) can be rewritten in terms of
the local reflection and transmission coefficients as follows:

R(&, p) = (31)
R"'”" ..... O .................. Tf’.’.":k
Tn—-l/n 0 Rn/n~l
L 0 0 Rn/n+l 0

By arranging the response functions in each layer into a response vector, we can relate this vector to the
global field vector with a phase-related receiver matrix R.,. For example, if the response functions w and 6,.
in each layer are concerned, we can define the response vector as

T T T\ T
v (v; € p) W (y; &, p) W (v; &, p)
by7é’p: ‘;V ya ) - ) ln ’,’ . 32
03 &p) (6}?@; ¢,p) 62 (y;¢,p) " (y;¢,p) (32
Thus the response vector can be expressed as
b(y) = Rei () Z R's, (33)
=0
where the phase-related receiver matrix is given by

(Mf})(y) My ()
My (y) My (y)

Rcv(y; éyp) = (34)

g MY M)
l M) M),

The solution shown in Eq. (33) is applicable to practical problem since only finite terms out of infinite sum
are involved for any given time of interest.
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Next, we consider the response of the layered medium subjected to dynamic loadings that are located
within layers instead of at the interface. The solution can be deduced easily by modifying the source vector s
presented in Eq. (25) through considering the physical meaning of the reflection and transmission matrix R
in Eq. (31). Since the representation of the source waves in the infinite domain depends on the location of
receiver, the source term in the matrix solution should be separated from the summation and will be de-
noted by a vector s;. The source emits waves propagating in two directions, which will become the incident
waves in the successive reflection and transmission by the interfaces. The succeeding reflected or transmitted
waves are thus obtained by multiplying the matrix R with s*. The transformed solution for a body source
located at y = —h,, in ith layer is expressed as follows (Lee and Ma, 1998):

b(y) =R S0+Rcv ZRI ) (35)

where s; is defined as

. T
ﬂ@m:(qqumﬁ“”m) for —hy >y > —hy, > —hi; (36a)

. T
SS(é7p) = (0303"'7S<_l>h§,707"'3030> fOI' _hi > _hSi >y > _hH»l; (36b)
and s* is given by

(GG T
s*(¢é,p) = (0,0, S, 7S+lh.y,.’ o 70,0) for all y. (36¢)

The elements of source vector for an anti-plane concentrated force with unit step time dependence are
given by

() S ) !
S, = eIt sy, =

= e T0h, (37)
2puiyra e 2puiyra

The transient solution can be accomplished by the application of Cagniard’s method which is surveyed
in detail in the text book by Achenbach (1980). If the applied loadings stated in the corresponding dynamic
problem is a unit step time function, the static solution can be deduced from the dynamic solution by the
final value theorem for Laplace transform,

w0 :.8) = limpi® (&, p)- -

3. Transient and static solutions for a layered half-space

In this section, the transient and static solutions of a layer overlying a half-space subjected to an anti-
plane loading are given explicitly. The transient responses are considered first. At time ¢ = 0, a concentrated
anti-plane force with magnitude oy is applied suddenly at (x,y) = (0, —4;) within the top layer. The
thickness of the top layer is & and the time dependence of the loading is represented by theTHeaViside
step time function H (7). The global field vector is a three-elements vector, ¢ = (w) w(" w®)" and the
source vector is given by

2ppnyvr(n

T
%:( n__ etk () Q for 0> —hy >y > —h
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T
s = (0 % g=rrmhs 0) for 0 >y > —h, > —h,

2puyrr(ny

and

T
« (00 atrrayhs (40 —rrihs ()
= c e
s (217#(1)3’7(1) 2puayr(1) for all ». (39)

The phase-related reflection and transmission matrix R, which is independent of the loading conditions, is
represented by a 3 x 3 matrix as follows,

0 l”]/() O
R(¢p)=| ripe ! 0 0], (40)
i e*(?’r(l)*‘/r(z))h 0 0

where the reflection coefficient 7y, at free surface y = 0 is unity and |/, and ¢,, are given in Eqgs. (27) and
(28), respectively.
If we only concern the responses in the layer, the response vector is thus chosen as,

b(y) = (W &l )T, (41)

and the receiver matrix is a 2 x 3 matrix expressed as follows:

(42)

elr(ny e 'Y 0
R (v) = ( > .

HyYray €7 mYrme T 0

By sorting the matrix solution in Eq. (35) into a series form and using the Cagniard method, the transient
solutions in the layer are expressed explicitly as follows:

! 1 0 1 on;
(. = % / o - 2: S 1
w(x,p,t) Im H(t—t)+ ) Im|r, H(t—1t))
2mpy /SZT(I) — ot / ’1/1 ot

+ 3 Im [P = T2 (1) + > I [ == S H (r — 1)
J=0

1/2
= /SZT(I) _ 'i,zz ot 2 i ot

Sty — N3
e 1@
Y Im | — 6”/“ Hit— 1) $dr, (43a)
— 2., OT
/ (1) 4

o 0 . On > on
a)(;)(x,y,z)ﬁ{(j:)lm{ gt‘)}]—[(tto +Zlm{l/2 a;I}H(ttjl)ZIm{r{;rzl ;Z}H(ttjz)

j=0

o o > Sl
-1 [47; aﬂH(rrﬁH}: [rﬁ; af}H(rtﬂ)}, (43b)
J=0
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0 0 . n; 6714
) N=220 | o Moy Iml|# . W U 4
O‘xz (an’7 ) 27_[ 5 ) at ( 0)+Z 1/2 2 ) at ( jl)
Sty — Mo J=0 Sty — Ma
| M2 e g Ma O
+Zlm 1/2ﬁ§ H( /2 +Zlm 1/2425 H(t—ljg)

Jj=0 STy — M J=0 ST(I) N
- it ja a’7_,‘4
J=0 Sty — M

where n, and 7, ..., n;, are functions of time and spatial coordinates and satisfy the following equations,
Ty — My + A+ nex = 1t, (44a)

and

\/ S%(l) - ’7,2'kyjk + n/k‘x =t (k = 1a 2a 3? 4)a (44b)

respectively. £, and ¢; are the arrival times of these waves and y; is given by

v = 2jh — (y — hy),

yp =20+ Dh+(y—hs),

y3 =20+ Dh+(y+h),
and

yia =20+ Dh— (v +hs).

The correspondent static problem can be obtained by applying the final value theorem to the dynamic
solution in the transform domain or by taking the limit analysis # — oo to the solution in time domain. The
static solutions, ¢{!)(x,y) and a{})(x, ), are given by

) % |4 v + Al n . y R - ARV S B
z( ’y) 27'5[ ) y+h 2 Z 1/2 )C2+y Z( 1/2) x2+yj22

J=0

—~

|
MS
=

RN B

+ |5

S
+ ~.
Ma é

/+l Vi
) 2 (45a)
=0 /:0 ! x2+yj4
() _ 0o x c - /+1 x s vyl X
o (x,) St -+ +2 )" 5
2n X2+ (v +hy) Z (s Z e Z R
= x
+ 7 j+1 45b
;( 1/2) x2+y2 ( )

where 1, = (1) — )/ (Hay + 1)) 1s the ‘static’ reflection coefficient. Note that the dynamic solutions in
Eqgs. (43b) and (43c) are converged to the static solutions in Egs. (45a) and (45b) term by term.
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4. Numerical results and discussions

In this section, the responses of a layered half-space subjected to an anti-plane loading with Heaviside
function are investigated in detail. The thickness of the layer is / and the loading is applied at (x,y) =
(0, —A/2) in the layer. Two cases with different wave velocity ratios are taken into account. One has faster
wave velocity in the layer and the ratio of velocities is c7(),/cr) = 0.771. The other with ¢7¢2)/crq) = 1.297
has faster velocity in the half-space. Note that the wave velocities shown in the numerical results are
normalized to the velocity in the layer for both cases. In order to have a better understanding of the
transition behavior from transient response to static value, the quantitative responses at near field (five
times the thickness of the layer from the source), intermediate field (50 times the thickness), and far field
(200 times the thickness) are presented in the following numerical results. The source and most of the
receivers considered in this paper are located at the same depth (y = —#/2) in the layer but different
horizontal positions. In fact, comprehensive studies for various locations of sources and receivers and ratios
of wave velocities have been done in this study. However, only the most representative results are chosen to
present in this paper.

4.1. Layer with faster wave velocity

The case with faster wave velocity in the layer is considered in this section. The wavefronts of the in-
cident, reflected, and refracted waves in the layered half-space at the instant ¢/s7(;)# = 10 are shown in Fig.
2. For the responses at intermediate or far range in the layer, it is expected from Fig. 2 that a great number
of reflected waves will arrive almost at the moment the incident wave arrives. The arrival times of incident
waves and subsequent reflected waves can be obtained from Eqs. (44a) and (44b), respectively. Fig. 3 shows
the transient responses of the displacements at three different receivers (x = 5k, 504, and 2004). It is ob-
served obviously that the displacements grow steadily as time increases. Moreover, at the same instant, the
displacements at the receivers closer to the source are larger than those farther to the source. Due to the
existence of rigid body motion, there are no corresponding static displacements in the problem considered
in this study. However, a particularly interesting phenomenon is exhibited in Fig. 3. The displacements
change apparently at around ¢ = x/crq) instead of ¢ = x/cr) when direct incident wave arrives. For in-
stance, the displacement at x = 200/ starts to grow at about ¢/sr()h ~ 250 instead of 200.

The near field response of ¢! at x = 5h is shown in Fig. 4. It is found that the transient responses
of stresses tend to static value uniformly after the arrival of the first few waves. Because of the Heaviside
source time function of the applied loading, the stress fields behave as a square root singularity at the
incident and reflected wavefronts. For the intermediate field (x = 504) and far field (x = 200%), the re-
sponses of ¢(l) are shown in Figs. 5 and 6. These results are quite different from those of near field. As was
expected, a large number of reflected waves arrive in a very short time right after the incident wave. For
instance, it is found that there are 20 reflected waves arriving at the far field receiver (x = 2004) within first

free surface

XX XX

Fig. 2. Wavefronts of the incident, reflected, and refracted waves in a layered half-space (cr(») /crqy = 0.771) at the instant /s7)h = 10.
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CrafCr(1=0.771

wu Rl )/0'0

4 1 1 |
0 100 200 300 400

tsyq)h

Fig. 3. Transient responses of displacements at x = 5k, 50k, 200/ and y = —h/2 in the layer with faster wave velocity.
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Fig. 4. Transient response and static value of stress o,, at (x,y) = (54, —%/2) in the layer with faster wave velocity.
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Fig. 5. Transient response and static value of stress o,, at (x,y) = (50h, —h/2) in the layer with faster wave velocity.
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Fig. 6. Transient response and static value of stress o,. at (x,y) = (2004, —h/2) in the layer with faster wave velocity.

second (from ¢/sz1yh = 200 to 201). The total number of waves from #/srq)h = 200 to 400 is 693 including
one incident wave and 692 reflected waves. This causes the stresses varying tremendously at the very be-
ginning as shown in the small windows in Figs. 5 and 6. The responses then vary smoothly before going to
static value. However, an interesting result is observed in the far field responses shown in Fig. 6. There is a
long period (¢/srqyh ~ 202-230) while the responses are very small and steady during the transition from
transient response to static value. This phenomenon may mislead one to believe that the response has
become static value already. In fact, the responses as shown in Fig. 6 will increase gradually after this period
and reach a relative maximum value at ¢/s7(1)h ~ 252.6. The relative maximum values is 0.00026 and the
corresponding static value is 8.6 x 107°. Finally, the response then goes to static value slowly. It is con-
cluded that the transient responses will go steadily to static value only after ¢ = x/crp) (or t/srayh =
xcr(y/crzyh) which depends not only on the distance (x) between the source and receiver but also on the
wave velocity (cr()) in the half-space.

4.2. Layer with slower wave velocity

Next, a layered half-space which has a slower wave velocity in the layer is considered. Compared with
the last case, the main feature in this case is that the waves in the layer may be refracted along the interface
with the higher speed cr(;y and arrive at the receiver earlier than the regular body waves that travel with
slower speed c7(1). These waves are well-known head waves. For illustration, the wavefronts of the incident,
reflected, refracted, and head waves at ¢/s7(;)2 = 5 are shown in Fig. 7 where head waves are indicated by
dotted lines. Head waves can be observed if the receiver is in a position such that

XL (46)
Rje ez
where R, = (x* + yfk)l/ * is the distance between receiver and image source. The head wave contributions
arise in the evaluation of inverse Laplace transforms along the Cagniard path from 5, = s7() t0 s7(1)x/Rj.
By substituting 1, = s7(2) and sy()x/Rj into Eq. (44b), the corresponding arrival (¢} ) and end (¢}) times of
head waves can be obtained as follows:

’jlkd = XS7(2) + YKy / Sty — Sty (47a)

tilke = RijT(1>. (47b)
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Fig. 7. Wavefronts of the incident, reflected, refracted, and head waves in a layered half-space (crq)/cray = 1.297) at the instant
l‘/STU)h =5.

Note that tﬁ.‘,f is also the arrival time of the wide-angle reflection. Due to the reflection between free surface
and interface, a receiver in the layer may have many head waves propagating through. The arrival time of
first head wave (j = 0 and £ = 1) then follows from Eq. (47a) as

toy = xso) — (v — hy) STy — St (48)

Similarly, from Eqgs. (46) and (47b), the end time of the last head wave is given by

he _STO)
tlaest =X (49)
ST(2)
The discussions mentioned above will be useful for the understanding of following numerical results.
The transient responses of displacements at three different receivers are shown in Fig. 8. Basically, the
responses here have similar pattern to those shown in Fig. 3. The main distinction is the contributions
caused by the head waves. The oscillations are clearly observed during the existence of head waves. After
the passage of head waves, the displacements increase steadily for the rest of time, in which the reflected
body waves exist only.
The transient responses of stress a'lat near (x = 54), intermediate (x = 504), and far (x = 200%) fields are
shown in Figs. 9—11. These results have totally different characteristics from those of previous case shown in
Figs. 4-6. Again, the effect of head waves plays a significant role here. By using Egs. (48) and (49), we can
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-0.6 [
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-08 [

_0 g L 1 L
0 100 200 300 400

t/sm )h

CrofCry=1-297
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Wi (4 )/O'o

Fig. 8. Transient responses of displacements at x = 5k, 50h, 200i and y = —h/2 in the layer with slower wave velocity.
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Fig. 9. Transient response and static value of stress a,. at (x,y) = (5h, —h/2) in the layer with slower wave velocity.
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Fig. 10. Transient response and static value of stress a,. at (x,y) = (50h, —h/2) in the layer with slower wave velocity.
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Fig. 11. Transient response and static value of stress o, at (x,y) = (200h, —//2) in the layer with slower wave velocity.



C.-C. Ma et al. | International Journal of Solids and Structures 38 (2001) 9295-9312 9311

estimate that head waves exist from #/s7(1)h = 4.49 to 6.49 at the receiver x = 5k, from 39.19 to 64.85 for
x = 50Ah, and from 154.84 to 259.40 for x = 2004. It is found that there are 329 head waves arriving at the
far-field receiver (x = 2004) from ¢/s7()h = 154.84 to 259.40. The characteristic times indicated above can
be distinctly observed in the numerical results shown in Figs. 8—11. Most of the transient stresses as shown
in Figs. 9-11 oscillate violently during the existence of the singular behavior near the wavefront of body
waves and go to static values once the head waves finish, i.e., t = xcr¢)/ czm) (or t/srayh = xcr(z)/crayh) from
Eq. (49). Therefore, in addition to the horizontal distance (x) between source and receiver, the time needed
for the transition from transient response to static value in this case depends on both wave velocities in
layer and half-space.

5. Conclusions

An effective matrix method has been used to investigate the transient waves in a multilayered medium
subjected to dynamic anti-plane loadings. The transient responses are obtained by means of Cagnaird’s
method. In order to understand the physical phenomena in the transition from transient response to static
value, the numerical results for two cases of layered half-spaces with different ratios of wave velocities have
been investigated in detail. Based on the studies, it is shown that not only the far field but also the long-time
responses can be obtained efficiently. It can be concluded from this study that the transient responses go
steadily to static values only after ¢ = x/cz(y for the case with faster wave velocity in the layer and go to
static value right after t = xcz(y)/ CZm) for the case with faster wave velocity in the half-space. A further study
for transition from transient response to steady state will be given in a follow-up paper.
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